Partition coefficients of alkyl aromatic hydrocarbons and esters in a hexane-acetonitrile system

V.A. Isidorov ${ }^{\text {a }}{ }^{*}$, U. Krajewska ${ }^{\text {a }}$, E.N. Dubis ${ }^{\text {b }}$, M.A. Jdanova ${ }^{\text {c }}$
${ }^{\mathrm{a}}$ Institute of Chemistry, Bialystok University, Al. Pilsudskiego 11/4, 15-443 Bialystok, Poland
${ }^{\mathrm{b}}$ Urzad Celny w Bialymstoku, Laboratorium Celne, ul. Octowa 2, 15-339 Bialystok, Poland
${ }^{\mathrm{c}}$ Institute of Chemistry, St. Petersburg University, 198904 St. Petersburg, Russia

Received 27 March 2001; accepted 1 May 2001

Abstract

Partition coefficients (K_{p}) in a heterogeneous system consisting of two immiscible organic solvents can be successfully used for a supplementary identification parameter in qualitative GC and GC-MS analysis of organic compounds. For rapid addition to database of K_{p} values, calculation methods based on the well-known 'retention-structure relationships' approach can be used. This paper reports the experimentally determined and calculated K_{p} values for 252 compounds including alkyl aromatic hydrocarbons and esters. It is shown that for group identification of components it is desirable to use not the K_{p} values themselves but the parameter j which is a combination of K_{p} and gas chromatographic retention indices: $j=k I-\log$ K_{p}. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Partition coefficients; Solubility-structure relationships; Structure-solubility relationships; Hydrocarbons, aromatic; Alkylbenzenes; Esters

1. Introduction

To increase identification reliability for components in complex organic compound mixtures in gas chromatographic analysis, it has been proposed to use partition coefficients $K_{\mathrm{p}}=C_{1} / C_{2}$, of the analytes between two immiscible liquids [1-3]. The efficiency of an approach based on simultaneous use of two parameters for identification: partition coefficient in a hexane-acetonitrile system and the retention index (I) was demonstrated in Refs. [4,5]. The analysis of essential oils from Artemisia pallens

[^0](davana oil) and birch buds was taken as an example. It was shown that preliminary assignment of mixture components on the basis of K_{p} values to certain homologous series also greatly increases identification reliability in GC analysis with detection by low-resolution mass spectrometry. The main factor preventing wide application of this method in routine analytical practice is the absence of sufficiently detailed databases of partition coefficients in hex-ane-acetonitrile or an analogous heterogeneous system.
The results of experimental K_{p} determination in the hexane-acetonitrile system have been reported for 77 components often encountered in essential oil of plants [6]. For a further 25 monoterpenes the pure reference preparations of which are absent or dif-
ficult to obtain, these values were estimated on the basis of the structure-solubility relationship.

In this paper we report K_{p} for 252 organic compounds. For 177 of them, K_{p} was determined experimentally. These compounds belong to two classes: alkyl aromatic hydrocarbons and esters. The former are contained in motor fuels and various solvents and are the most common pollutants in natural and wastewaters. Esters of fatty and aromatic acids are also anthropogenic pollutants but they are often encountered in the vegetable kingdom as well: together with many compounds of other classes, they are contained in essential oils and lipids of cuticular wax. Therefore, in analytical practice it is often necessary to recognize these components in a background of representatives of other homologous series.

2. Experimental

2.1. Materials

Commercial $\mathrm{C}_{7}-\mathrm{C}_{9}$ alkyl aromatic hydrocarbons, esters of $\mathrm{C}_{1}-\mathrm{C}_{8}$ aliphatic alcohols and $\mathrm{C}_{1}-\mathrm{C}_{6}$ carboxylic acids (Aldrich), as well as preparations of $\mathrm{C}_{10}-\mathrm{C}_{17}$ aromatic hydrocarbons from the collection of the Institute of Chemistry of St. Petersburg University (Russia) were used. Esters of $\mathrm{C}_{10}-\mathrm{C}_{20}$ carboxylic acids and acetate of $\mathrm{C}_{10}-\mathrm{C}_{22}$ alcohols were synthesized by esterification method $[7,8]$ in the Institute of Chemistry of Białystok University. Esters of aromatic, monoterpene and sesquiterpene alcohols, as well as lactones were obtained from a factory of aromatic substances (Firmenich, Grodzisk Mazowiecki, Poland).

Acetonitrile (Merck, HPLC grade), n-hexane (Baker, HPLC grade), chloroform and toluene were used without additional purification and drying.

2.2. Sample preparation and analysis

Samples were prepared for partition coefficient determination at room temperature $\left(20 \pm 2^{\circ} \mathrm{C}\right)$. A 2 ml flask was charged through a pipette with 0.5 ml of n-hexane and 0.5 ml of acetonitrile. In this flask were added $20-30 \mu \mathrm{l}$ of hexane solution of $1-5$ esters from the collection, $1 \mu \mathrm{l}$ of toluene and $5 \mu \mathrm{l}$ of $\mathrm{C}_{7}-\mathrm{C}_{14}$ or $\mathrm{C}_{8}-\mathrm{C}_{18} n$-alkanes. Subsequently the
flask was closed and shaken for 30 s . After phase separation each of them was subjected to analysis. Gas chromatographic separation was carried out with a Hewlett-Packard HP-4890D GC system equipped with flame ionisation detector and fused-silica column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm}$, film thickness, $0.25 \mu \mathrm{~m}$) with HP-5 phase at a helium flow-rate of $1 \mathrm{ml} / \mathrm{min}$ (split $1: 30$). The analysis was carried out with temperature programming from 40 to $180^{\circ} \mathrm{C}$ at a rate of $3^{\circ} \mathrm{C} / \mathrm{min}$.

The same procedure of sample preparation for analysis was used in K_{p} determination for esters of lower alcohols and carboxylic acids. Esters of $\mathrm{C}_{10}-$ C_{20} carboxylic acids and acetates of $\mathrm{C}_{10}-\mathrm{C}_{22}$ alcohols as well as reference $\mathrm{C}_{10}-\mathrm{C}_{25} n$-alkanes were introduced into the hexane-acetonitrile system in the form of solutions diluted in chloroform. In this case n-pentylbenzene was used as internal standard. The total volume of esters, alkanes, and internal standard solutions did not exceed 3% of the volume of the hexane-acetonitrile heterogeneous system. In this case gas chromatographic separation was carried out in the splitless regime with temperature programming from 50 to $100^{\circ} \mathrm{C}$ at a rate of $6^{\circ} \mathrm{C} / \mathrm{min}$ and from 100 to $280^{\circ} \mathrm{C}$ at a rate of $4^{\circ} \mathrm{C} / \mathrm{min}$.

The values of retention time were used to calculate retention indices. Partition coefficients were calculated from the ratio of peak areas of the components by using Eq. (1):
$K_{\mathrm{p}}=\left(S_{\mathrm{h}}^{x} / S_{\mathrm{a}}^{x}\right)\left(S_{\mathrm{a}}^{t} / S_{\mathrm{h}}^{t}\right)$
where S_{h}^{x} and S_{a}^{x} are the peak areas of the component x on the chromatograms of the hexane and the acetonitrile phases, respectively, and S_{a}^{t} and S_{h}^{t} are the peak areas of internal standard (toluene or n pentylbenzene) on these chromatograms.

The prediction of partition coefficients and retention indices was made by the least-square method.

3. Results and discussion

In this work K_{p} values of 34 alkyl aromatic hydrocarbons were determined experimentally (Table 1). However, this is only a small fraction of known individual compounds of this class present in various industrial mixtures and environmental samples. Pure preparations of most of them are difficult to obtain. Hence, the experimental determination of

Table 1
Retention indices and K_{p} values of alkyl aromatic hydrocarbons

Hydrocarbon	Boiling point (K)	$n_{\text {c }}$	$I^{\text {exp }}$	$K_{\mathrm{p}}^{\text {exp }}$	$K_{\mathrm{p}}^{\text {calc }}$ (2a)	$K_{\mathrm{p}}^{\text {calc }}(2 \mathrm{~b})$
Toluene	383.78	1	760	1.07 ± 0.15	1.09	1.09
Ethyl benzene	409.3	2	857	1.39 ± 0.18	1.40	1.41
p-Xylene	411.5	2	866	1.42 ± 0.32	1.42	1.43
m-Xylene	412.25	2	868	1.44 ± 0.20	1.43	1.43
o-Xylene	417.56	2	888	1.49 ± 0.18	1.48	1.48
Isopropylbenzene (cumene)	425.54	3	926	1.70 ± 0.22	1.71	1.72
n-Propylbenzene	432.15	3	950	1.81 ± 0.21	1.79	1.78
1,3,5-Trimethylbenzene	437.85	3	994	1.88 ± 0.31	1.85	1.89
1,2,4-Trimethylbenzene	442.5	3	1004	1.92 ± 0.29	1.90	1.92
Isobutylbenzene	445.15	4	1009	2.15 ± 0.32	2.13	2.13
1,2,3-Trimethylbenzene	449.23	3	1018	1.96 ± 0.29	1.98	1.95
p-Cymene	450.40	4	1022	2.23 ± 0.21	2.20	2.17
1,3-Diethylbenzene	454.25	4	1045	2.23 ± 0.24	2.26	2.23
n-Butylbenzene	456.42	4	1054	2.35 ± 0.23	2.28	2.26
1,2-Diethylbenzene	456.6	4	1055	2.27 ± 0.30	2.29	2.26
1,4-Diethylbenzene	456.9	4	1056	2.28 ± 0.25	2.29	2.26
2,4-Dimethyl-1-ethylbenzene	461.56	4	1075	2.33 ± 0.28	2.35	2.32
tert.-Pentylbenzene	463.15	5	1090	2.63 ± 0.30	2.62	2.61
sec.-Pentylbenzene	465.15	5	1098	2.65 ± 0.31	2.65	2.63
1-Methyl-4-tert.-butylbenzene	468.95	5	1101	2.71 ± 0.30	2.71	2.64
1,2-Dimethyl-4-isopropylbenzene	474.95	5	1139	2.78 ± 0.28	2.81	2.76
1-Methyl-3,5-diethylbenzene	475.6	5	1143	2.79 ± 0.11	2.82	2.78
1,2-Di-isopropylbenzene	477.15	6	1156	3.14 ± 0.32	3.13	3.11
n-Pentylbenzene	478.55	5	1154	2.89 ± 0.39	2.86	2.81
1,2-Dimethyl-4-propylbenzene	482.05	5	1169	2.87 ± 0.21	2.92	2.86
1,2-Dimethyl-4-tert.-butylbenzene	-	6	1205	3.14 ± 0.30	-	3.28
1,2-Dimethyl-4-sec.butylbenzene	-	6	1222	3.21 ± 0.31	-	3.35
1,2-Dimethyl-4-isobutylbenzene	-	6	1241	3.25 ± 0.32	-	3.41
Isopropylmesitylene	-	6	1250	3.31 ± 0.31	-	3.45
sec.-Butylmesitylene	-	7	1258	3.62 ± 0.35	-	3.84
1,4-Dimethyl-4-butylbenzene	-	6	1321	3.91 ± 0.26	-	3.71
n-Butylmesitylene	-	7	1368	4.20 ± 0.35	-	4.29
1,4-Di-isopentylbenzene	-	10	1491	7.00 ± 0.68	-	6.64
1,4-Di-isobutylmesitylene	-	11	1640	7.88 ± 0.78	-	8.09

Coefficients of (2a): $\log K_{\mathrm{p}}=a \log T+b n_{\mathrm{C}}+c: a=2.7413 ; b=0.0424 ; c=-7.0270 ; N=25 ; R=0.999 ; R^{2}=0.998 ; F=5489$. Coefficients of (2b): $\log K_{\mathrm{p}}=a \log I+b n_{\mathrm{C}}+c: a=1.3186 ; b=0.0430 ; c=-3.8039 ; N=34 ; R=0.998 ; R^{2}=0.996 ; F=3860$.
K_{p} is virtually impossible. Therefore, for a rapid increase in databases, it is necessary to apply calculation methods analogous to those based on the known 'retention-structure relationships' approach [9].

For the calculation of K_{p} values we used the three-parameter correlation equation:
$\log K_{\mathrm{p}}=a \log X+b Y+c$
in which descriptors X and Y are weakly intercorrelated physicochemical or structural characteris-
tics of the representatives of this homologous series [6,10].

The last two columns in Table 1 contain K_{p} values calculated from Eq. (2). In the first case (2a) reference book [11,12] data on boiling temperatures at atmospheric pressure were used as descriptor X (nine out of the hydrocarbons listed in Table 1 are not present in these reference books). In the second case (2b), the retention indices of hydrocarbons measured on the HP-5 column served as descriptor X. The independent variable Y in Eq. (2) was the total number of carbon atoms in alkyl groups (n_{C}) of
the corresponding hydrocarbons. The lower lines in Table 1 contain the values of the coefficients a, b, and c in the equation for both calculation variants and those determination coefficients R^{2} and the F tests. It can be seen that in both cases there is good agreement between measured and calculated K_{p} values. Consequently, there is no fundamental difference between the results of calculation according to Eq. (2) when boiling temperatures or careful determined retention indices are used as one of the variables. In practice, the choice between them may be determined by the degree of presentation of these characteristics in the available databases. For example, boiling temperatures at atmospheric pressure are extensively presented in various reference books. Hence, the K_{p} values and retention indices can be calculated by using this parameter. Table 2 gives K_{p} and I calculated in this way from Eq. (2) for 48 alkyl aromatic hydrocarbons.

Unlike hydrocarbons, many esters are not represented in databases on boiling temperatures at atmospheric pressure. This is especially true for high boiling and relatively labile esters of terpene alcohols. On the other hand, these compounds are often encountered in essential oils of plants and are rather well characterized by retention indices. For example, in Ref. [13] the values of I are given for many tens of compounds of this class. Therefore, to predict the K_{p} values for esters, it is reasonable to use the retention index as the independent variable X in Eq. (2).

Table 3 lists experimental and calculated (marked by an asterisk) K_{p} values for 170 compounds. In the case of esters of aliphatic $\mathrm{C}_{1}-\mathrm{C}_{22}$ alcohols, the number of carbon atoms in the molecule of the corresponding alcohol was used as the second descriptor Y in Eq. (2). In the case of esters of $\mathrm{C}_{10}-\mathrm{C}_{20}$ fatty acids, it was the number of carbon atoms in the molecule of the corresponding acid. Most acetates of terpene alcohols are represented by isomers differing in the degree of formal unsaturation. Hence, to predict K_{p} values for 44 esters, the number of rings in the molecule was used in Eq. (2) as the parameter Y.

Table 4 gives the coefficients of regression in Eq. (2) calculated by the least-squares method using only experimentally determined K_{p} values. It can be seen that in all cases they are characterized by high
coefficients of determination R^{2} and by the data of the F-test indicating the equation is significant at least at the 95% significance level. The least reliable values of coefficients were obtained for acetates of terpene alcohols. This is due to the fact that up to the present, K_{p} values were determined experimentally with sufficient accuracy only for a few representatives of this series of compounds.

The data of Tables 1-3 show that in different homologous series the values of K_{p} increase monotonically on passing from lower to higher homologues. For instance, for $\mathrm{C}_{7}-\mathrm{C}_{11}$ aromatic hydrocarbons, they range from 1 to 8 , whereas for acetates of $\mathrm{C}_{4}-\mathrm{C}_{20}$ aliphatic alcohols they range from 0.5 to 25. In other words, the K_{p} values for members of these series partially overlap. This feature decreases the value of K_{p} as an identification characteristic. However, in Ref. [3] a close relationship between retention indices and partition coefficients was pointed out. This relationship is described by a linear equation of the form:
$\log K_{\mathrm{p}}=k I+j$.
Fig. 1 shows that straight lines of the plot in a system of coordinates $\log K_{\mathrm{p}}-I$ referring to different

Fig. 1. Plots of $\log K_{\mathrm{p}}$ against retention indices: (1) aromatic hydrocarbons ($y=0.001 x-0.7318 ; R^{2}=0.987, F=683$); (2) butanoate of aliphatic $\mathrm{C}_{1}-\mathrm{C}_{6}$ alcohols $(y=0.0009 x-0.84319$; $R^{2}=0.986, F=423$); (3) acetates of aliphatic $\mathrm{C}_{1}-\mathrm{C}_{6}$ alcohols ($y=0.0009 x-0.9763 ; R^{2}=0.999, F=4995$); (4) propyl esters of $\mathrm{C}_{10}-\mathrm{C}_{20}$ carboxylic acids $\left(y=0.001 x-0.9937 ; R^{2}=0.996\right.$, $F=996$); (5) methyl esters of $\mathrm{C}_{10}-\mathrm{C}_{20}$ carboxylic acids $(y=$ $0.001 x-1.0625 ; R^{2}=0.997, F=1994$); (6) n-alkanes $C_{8}-C_{15}$ ($y=0.0009 x+0.3439 ; R^{2}=0.997, F=1994$).

Table 2
Calculation of K_{p} and I values for alkyl aromatic hydrocarbons according to Eq. (2) (variable parameters X and Y are the boiling point and the number of carbon atoms in the side chain in the molecule, respectively)

Hydrocarbon	Boiling point (K)	$n_{\text {c }}$	$K_{\mathrm{p}}^{\text {calc }}$	$I^{\text {calc }}$
1-Methyl-3-ethylbenzene	434.45	3	1.81	960
1-Methyl-4-ethylbenzene	435.14	3	1.82	963
1-Methyl-2-ethylbenzene	438.30	3	1.86	976
tert.-Butylbenzene	442.27	4	2.10	993
sec.-Butylbenzene	446.45	4	2.15	1012
o-Cymene	451.50	4	2.22	1034
1-Methyl-3-propylbenzene	454.90	4	2.26	1049
1,3-Dimethyl-5-ethylbenzene	456.15	4	2.28	1055
1-Methyl-2-propylbenzene	457.90	4	2.30	1063
1,4-Dimethyl-2-ethylbenzene	460.06	4	2.33	1072
1,2-Dimethyl-4-ethylbenzene	462.15	4	2.36	1082
1-Methyl-3-tert.-butylbenzene	462.41	5	2.61	1083
1,2,3,4-Tetramethylbenzene	463.05	4	2.38	1086
1,3-Dimethyl-2-ethylbenzene	463.25	4	2.38	1087
1-Isopropyl-3-ethylbenzene	465.15	5	2.65	1095
1-Methyl-4-tert.-butylbenzene	465.91	5	2.66	1099
1,2-Dimethyl-3-ethylbenzene	467.06	4	2.43	1104
1-Methyl-3-isobutylbenzene	467.15	5	2.68	1104
1-Methyl-3-sec.-butylbenzene	467.15	5	2.68	1104
1,3-Dimethyl-5-isopropylbenzene	467.65	5	2.69	1107
1-Propyl-4-ethylbenzene	467.65	5	2.69	1107
2-Methyl-4-phenylbutane	468.45	5	2.70	1110
1-Methyl-4-isobutylbenzene	469.15	5	2.71	1114
1-Methyl-4-sec.-butylbenzene	469.15	5	2.71	1114
1,4-Dimethyl-2-isopropylbenzene	469.35	5	2.72	1114
1-Isopropyl-4-ethylbenzene	469.75	5	2.72	1116
1-Methyl-2-sec.-butylbenzene	470.15	5	2.73	1118
1-Methyl-3-butylbenzene	470.65	5	2.74	1120
1,2,4,5-Tetramethylbenzene	471.15	4	2.49	1123
Isopentylbenzene	471.65	5	2.75	1125
1-Methyl-4-butylbenzene	471.65	5	2.75	1125
1,3-Diethyl-5-methylbenzene	472.15	5	2.76	1127
2,4-Dimethyl-1-isopropylbenzene	472.25	5	2.76	1128
1-Methyl-2-tert.-butylbenzene	473.60	5	2.78	1134
1-Methyl-2-butylbenzene	473.65	5	2.78	1134
1,3-Dimethyl-5-propylbenzene	475.45	5	2.81	1143
1,3-Di-isopropylbenzene	476.35	6	3.12	1146
1,4-Dimethyl-2-propylbenzene	477.45	5	2.39	1152
1,2,3,5-Tetramethylbenzene	478.15	4	2.59	1156
2,4-Dimethyl-1-propylbenzene	479.75	5	2.88	1163
1,4-Di-isopropylbenzene	483.15	6	3.24	1178
1-Isobutyl-4-ethylbenzene	484.15	6	3.26	1183
Isohexylbenzene	487.65	6	3.32	1200
1,4-Di-tert.-butylbenzene	509.65	8	4.56	1306
Hexamethylbenzene	538.15	6	4.34	1454
1,2,3,5-Tetraethylbenzene	523.15	8	4.89	1374
1,2,3,4-Tetraethylbenzene	524.15	8	4.92	1380
Hexaethylbenzene	571.15	12	9.17	1627

Table 3
Retention indices and K_{p} values of esters

No.	Compound	Formula	$I^{\text {lit }}$ [13]	$I^{\text {exp }} \pm \sigma$	$K_{\mathrm{p}} \pm \sigma$
Aliphatic esters					
1	Butyl formate	$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$	-	737 ± 2	0.33 ± 0.04
2	Isopentyl formate	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$	792	792 ± 2	0.39 ± 0.04
3	n-Pentyl formate	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$	-	825 ± 2	0.39 ± 0.04
4	n-Hexyl formate	$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$	-	927 ± 3	0.46 ± 0.08
5	Ethyl acetate	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	630	-	0.50*
6	n-Propyl acetate	$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$	719	-	0.58*
7	n-Butyl acetate	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$	812	812 ± 1	0.53 ± 0.05
8	Isopentyl acetate	$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$	876	867 ± 2	0.58 ± 0.02
9	n-Pentyl acetate	$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$	915	916 ± 2	0.64 ± 0.03
10	n-Hexyl acetate	$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$	1008	1008 ± 2	0.78 ± 0.04
11	n-Heptyl acetate	$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$	1113	1112 ± 2	0.96 ± 0.04
12	n-Octyl acetate	$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{2}$	1211	1210 ± 2	1.15 ± 0.04
13	n-Nonyl acetate	$\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{2}$	1312	-	1.41*
14	n-Decyl acetate	$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2}$	1409	-	1.74*
15	n-Dodecanol acetate	$\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{2}$	-	1610 ± 2	2.65 ± 0.36
16	n-Tridecanol acetate	$\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{2}$	-	1710 ± 2	3.14 ± 0.40
17	n-Tetradecanol acetate	$\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2}$	-	1810 ± 2	4.24 ± 0.72
18	n-Pentadecanol acetate	$\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{2}$	-	1911 ± 2	5.05 ± 0.63
19	n-Hexadecanol acetate	$\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2}$	-	2009 ± 2	6.22 ± 0.59
20	n-Octadecanol acetate	$\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{2}$	2210	2211 ± 2	9.26 ± 0.87
21	n-Eicosanol acetate	$\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{O}_{2}$	-	2413 ± 2	14.33 ± 0.92
22	n-Docosanol acetate	$\mathrm{C}_{24} \mathrm{H}_{48} \mathrm{O}_{2}$	-	2613 ± 2	24.42 ± 2.82
23	Ethyl propanoate	$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$	714	714 ± 2	0.45 ± 0.05
24	Propyl propanoate	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$	806	-	0.59*
25	sec.-Butyl propanoate	$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$	-	889 ± 2	0.74 ± 0.02
26	n-Butyl propanoate	$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$	-	908 ± 3	0.75 ± 0.04
27	Isopentyl propanoate	$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$	-	969 ± 3	0.94 ± 0.03
28	n-Pentyl propanoate	$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$	972	-	0.94*
29	Methyl butanoate	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	724	724 ± 1	0.64 ± 0.08
30	Ethyl butanoate	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$	800	800 ± 2	0.70 ± 0.08
31	Isopropyl butanoate	$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$	842	843 ± 2	0.85 ± 0.03
32	n-Propyl butanoate	$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$	896	896 ± 2	0.88 ± 0.04
33	sec.-Butyl butanoate	$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$	-	953 ± 3	1.07 ± 0.04
34	n-Butyl butanoate	$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$	993	-	1.04*
35	n-Pentyl isobutanoate	$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$	1057	-	1.27*
36	Isopentyl butanoate	$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$	1060	1060 ± 3	1.26 ± 0.02
37	n-Pentyl butanoate	$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$	1093	1094 ± 2	1.23 ± 0.04
38	n-Hexyl isobutanoate	$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{2}$	1150	-	1.55*
39	Hexyl butanoate	$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{2}$	1191	1190 ± 3	1.57 ± 0.05
40	n-Heptyl isobutanoate	$\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{2}$	1248	-	1.88*
41	Isopropyl 3-methyl butanoate	$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$	-	904 ± 4	1.02 ± 0.04
42	Isobutyl 3-methyl butanoate	$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$	-	1006 ± 3	1.35 ± 0.08
43	Methyl pentanoate	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$	825	825 ± 3	0.89 ± 0.03
44	Ethyl pentanoate	$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$	898	898 ± 3	1.07 ± 0.02
45	Isopentyl 2-methyl butanoate	$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{2}$	1099	-	1.63*
46	Isopentyl 3-methyl butanoate	$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{2}$	1103	-	1.64*
47	n-Hexyl 2-methyl butanoate	$\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{2}$	1234	-	2.09*
48	n-Hexyl 3-methyl butanoate	$\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{2}$	1243	-	2.12*
49	Ethyl hexanoate	$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$	996	998 ± 2	1.61 ± 0.03

Table 3. Continued

No.	Compound	Formula	$I^{\text {lit }}$ [13]	$I^{\text {exp }} \pm \sigma$	$K_{\mathrm{p}} \pm \sigma$
50	Propyl hexanoate	$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$	1092	1089 ± 3	2.00 ± 0.03
51	Butyl hexanoate	$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{2}$	1188	1188 ± 3	2.50 ± 0.03
52	Pentyl hexanoate	$\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{2}$	-	1287 ± 3	3.14 ± 0.03
53	Hexyl hexanoate	$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2}$	1383	1382 ± 2	4.01 ± 0.03
54	Methyl decanoate	$\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{2}$	1326	1326 ± 2	1.70 ± 0.80
55	Methyl undecanoate	$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2}$	1425	-	2.12*
56	Methyl dodecanoate	$\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{2}$	1525	1527 ± 2	2.58 ± 0.17
57	Methyl tridecanoate	$\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{2}$	1626	-	3.12*
58	Methyl tetradecanoate	$\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{2}$	1726	1728 ± 2	4.00 ± 0.34
59	Methyl pentadecanoate	$\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2}$	1827	-	4.86*
60	Methyl hexadecanoate	$\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{2}$	1927	1929 ± 2	6.09 ± 0.45
61	Methyl heptadecanoate	$\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2}$	-	2030 ± 2	7.69 ± 0.64
62	Methyl octadecanoate	$\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{O}_{2}$	2128	2130 ± 2	9.50 ± 0.15
63	Methyl nonadecanoate	$\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{2}$	2228	-	12.80*
64	Methyl eicosanoate	$\mathrm{C}_{21} \mathrm{H}_{42} \mathrm{O}_{2}$	-	2332 ± 2	17.02 ± 3.32
65	Ethyl decanoate	$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2}$	1394	1399 ± 2	2.27
66	Ethyl undecanoate	$\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{2}$	1493	-	2.85*
67	Ethyl dodecanoate	$\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{2}$	1593	-	3.60*
68	Ethyl tridecanoate	$\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{2}$	1693	-	4.52*
69	Ethyl tetradecanoate	$\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2}$	1793	1798 ± 2	5.60
70	Ethyl hexadecanoate	$\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2}$	1993	1999 ± 2	8.87
71	Ethyl heptadecanoate	$\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{O}_{2}$	-	2098 ± 2	11.08
72	Ethyl octadecanoate	$\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{2}$	2194	2199 ± 2	13.77
73	Ethyl nonadecanoate	$\mathrm{C}_{21} \mathrm{H}_{42} \mathrm{O}_{2}$	2294	-	16.88*
74	Ethyl eicosanoate	$\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{O}_{2}$	-	2400 ± 2	20.74 ± 1.06
75	Propyl decanoate	$\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{2}$	-	1493 ± 2	2.93
76	Propyl undecanoate	$\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{2}$	1592	-	3.72*
77	Propyl dodecanoate	$\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{2}$	1692	-	4.73*
78	Propyl tridecanoate	$\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2}$	1792	-	5.99*
79	Propyl tetradecanoate	$\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{2}$	-	1893 ± 2	7.39
80	Propyl pentadecanoate	$\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2}$	1992	-	9.47*
81	Propyl hexadecanoate	$\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{O}_{2}$	-	2094 ± 2	11.51
82	Propyl heptadecanoate	$\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{2}$	-	2193 ± 2	14.81
83	Propyl octadecanoate	$\mathrm{C}_{21} \mathrm{H}_{42} \mathrm{O}_{2}$	-	2294 ± 2	19.81
84	Propyl nonadecanoate	$\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{O}_{2}$	2392	-	22.64*
85	Propyl eicosanoate	$\mathrm{C}_{23} \mathrm{H}_{46} \mathrm{O}_{2}$	-	2495 ± 2	26.93
Esters of aromatic alcohols					
86	Benzyl acetate	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$	1163	1163 ± 1	0.13 ± 0.01
87	1-Phenyl ethyl acetate (stralyl acetate)	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$	1192	1194 ± 1	0.18 ± 0.01
88	Phenyl propyl acetate	$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$	-	1370 ± 1	0.19 ± 0.01
89	4-Phenyl 2-butyl acetate	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$	-	1423 ± 1	0.26 ± 0.02
90	Phenyl pentyl acetate	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$	-	1492 ± 1	0.40 ± 0.01
91	Carvacrol acetate	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$	1371	1369 ± 1	0.09 ± 0.01
92	p-Anisyl acetate	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$	1416	1419 ± 1	0.06 ± 0.01
93	Cinnamyl acetate (E)	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}$	1443	1444 ± 1	0.10 ± 0.01
94	Allyl phenoxy acetate	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$	-	1452 ± 1	0.04 ± 0.01
95	Phenyl ethyl 3-methyl butanoate	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$	1489	1490 ± 1	0.35 ± 0.01
96	Isoeugenol acetate (E)	$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$	1611	1617 ± 7	0.06 ± 0.01
97	Cinnamyl pentyl acetate (Z)	$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}$	-	1761 ± 1	0.68 ± 0.01
98	Cinnamyl pentyl acetate (E)	$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}$	-	1781 ± 1	0.54 ± 0.01

Table 3. Continued

No.	Compound	Formula	$I^{\text {lit }}$ [13]	$I^{\text {exp }} \pm \sigma$	$K_{\mathrm{p}} \pm \sigma$
Acetates of terpene alcohols					
99	Linalool	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1257	1257 ± 2	0.93 ± 0.04
100	Chrysanthenyl, cis-	$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$	1262	1261 ± 1	1.12 ± 0.03
101	Isobornyl	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1285	1289 ± 2	1.14 ± 0.04
102	Bornyl	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1285	1291 ± 2	1.28 ± 0.04
103	Sabinyl, trans-	$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$	1291	1291 ± 2	1.17 ± 0.03
104	Verbenyl, trans-	$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$	1292	1294 ± 3	1.24 ± 0.04
105	α-Terpenyl	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1350	1351 ± 1	1.26 ± 0.06
106	Citronellyl	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{2}$	1354	1355 ± 1	1.18 ± 0.04
107	Santolyl	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1171	-	0.75*
108	Artemisyl	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1173	-	0.75*
109	Myrcenol, dihydro-	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{2}$	1215	-	0.84*
110	Sabinene hydrate, cis-	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1219	-	1.01*
111	Fenchyl, endo-	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1220	-	1.02*
112	Fenchyl, exo-	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1234	-	1.05*
113	Myrtenyl	$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$	1235	-	1.06*
114	Sabinenehydrate, trans-	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1253	-	1.10*
115	Lavandulol, tetrahydro-	$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2}$	1270	-	0.96*
116	3-Thujyl, neo-	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1271	-	1.15*
117	Isopulegol	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1273	-	1.06*
118	Isopulegol, neo-	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1273	-	1.06*
119	Menthyl, neo-	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{2}$	1275	-	1.06*
120	3-Thujyl, neo-, iso-	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1278	-	1.17*
121	Isopulegol, iso-	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1281	-	1.08*
122	Verbenyl, cis-	$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$	1282	-	1.18*
123	Lavandulil	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1289	-	1.01*
124	3-Thujyl, trans-	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1291	-	1.21*
125	Menthyl	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{2}$	1294	-	1.11*
126	Pinocarvyl, trans-	$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$	1297	-	1.23*
127	α-Terpenyl, dihydro-, cis-	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{2}$	1298	-	1.13*
128	3-Thujyl, iso-	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1301	-	1.24*
129	Dihydrocarveol, neo-	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1303	-	1.14*
130	Dihydrocarveol	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1305	-	1.14*
131	Verbanol, iso-	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1306	-	1.25*
132	Isomenthyl	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{2}$	1306	-	1.15*
133	Isopulegol, neo-, iso-	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1308	-	1.15*
134	Pinocarvyl, cis-	$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$	1309	-	1.26*
135	α-Terpenyl, dihydro-, trans-	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{2}$	1315	-	1.17*
136	Verbanol, neo-	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1318	-	1.29*
137	Dihydro citronellol	$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2}$	1320	-	1.08*
138	Dihydrocarveol, iso-	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1325	-	1.20*
139	Verbanol, neo-, iso-	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1328	-	1.32*
140	Piperitol, cis-	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1330	-	1.21*
141	Carvyl, trans-	$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$	1337	-	1.23*
142	Piperitol, trans-	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1340	-	1.24*
143	Verbanol	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1340	-	1.35*
144	Terpin-4-ol	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1340	-	1.24*
145	Dihydrocarveol, neo-	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1356	-	1.29*
146	Neryl	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1365	-	1.20*
147	Carvyl, cis-	$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$	1362	-	1.31*
148	Myrtanol, trans-	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1381	-	1.49*
149	Geranyl	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1383	-	1.25*
150	1-p-Menthen-9-yl	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$	1420	-	1.49*

Table 3. Continued

No.	Compound	Formula	$I^{\text {lit }}$ [13]	$I^{\text {exp }} \pm \sigma$	$K_{\mathrm{p}} \pm \sigma$
Acetates of sesquiterpene alcohols					
151	Caryophyllene	$\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2}$	1700	1704 ± 1	2.90 ± 0.10
152	Nerolidol (E)	$\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2}$	1714	1715 ± 2	2.60 ± 0.25
153	Guaiol	$\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2}$	1724	1727 ± 1	2.84 ± 0.10
154	γ-Eudesmol	$\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2}$	1778	1778 ± 1	3.37
155	Amboryl (acetoxymethylisolongifolene)	$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2}$	-	1782 ± 1	2.24 ± 0.10
156	α-Bisabolol	$\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2}$	1796	1797 ± 1	3.13 ± 0.10
157	Farnesyl	$\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2}$	1818	1820 ± 2	4.99 ± 0.18
Other esters					
158	3-Hexenol acetate (Z)	$\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}$	1007	1007 ± 1	0.45 ± 0.01
159	Citronellyl formate	$\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2}$	1275	1271 ± 1	0.70 ± 0.04
160	Linalool propanoate	$\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}$	-	1340 ± 1	1.33 ± 0.09
161	Nopyl acetate	$\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}$	1424	1327 ± 1	1.23 ± 0.06
162	Citryl acetate	$\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}$	-	1517 ± 2	0.84 ± 0.02
163	Geranyl butanoate	$\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}$	1562	1564	1.73 ± 0.05
Lactones					
164	γ-Octalactone	$\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}$	-	1256 ± 1	0.07 ± 0.01
165	Octalactone, β-methyl	$\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}$	-	1290 ± 2	0.10 ± 0.01
166	γ-Nonalactone	$\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}$	1360	1362 ± 1	0.08 ± 0.01
167	γ-Decalactone	$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}$	1463	1467 ± 1	0.10 ± 0.02
168	δ-Decalactone	$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}$	1493	1500 ± 1	0.31 ± 0.02
169	γ-Undecalactone	$\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2}$	-	1574 ± 1	0.13 ± 0.01
170	δ-Dodecalactone	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{2}$	-	1711 ± 1	0.34 ± 0.02

groups of homologues have approximately the same slope. This fact implies that the coefficient k in Eq. (3) characterizes the given heterogeneous system: for the hexane-acetonitrile system $k=(1.1 \pm 0.2) \times 10^{-3}$ whereas for the hexane-nitromethane system it is $(1.33 \pm 0.30) \times 10^{-3}$. At the same time the coefficient j in this equation is the characteristic of members of
a certain homologous series. Hence, it can be used as a group identification parameter. Table 5 gives the values of the parameter j obtained in this work and calculated from data obtained in Ref. [6] for representatives of some classes of organic compounds. This table shows that although the K_{p} values for the representatives of a certain homologous series can

Table 4
Regression coefficients of the equation $\log K_{\mathrm{p}}=a \log I+b n_{\mathrm{C}}+c$

Esters	N	a	b	c	R^{2}	F
Formate	4	1.2520	0.0098	-4.1100	0.999	499
Acetate $\mathrm{C}_{4}-\mathrm{C}_{22}$	14	-0.2796	0.0997	0.1248	0.999	5494
Propanoate	4	0.3147	0.08943	- 1.4144	0.998	245
Butanoate	7	-0.0156	0.08552	-0.2762	0.994	331
Pentanoate	4	3.2430	-0.0325	-9.4790	0.999	499
Hexanoate	5	- 1.2599	0.14369	3.6973	0.999	999
Methyl esters of $\mathrm{C}_{10}-\mathrm{C}_{20}$ acids	7	-2.7716	0.1650	7.2451	0.997	665
Ethyl esters of $\mathrm{C}_{10}-\mathrm{C}_{20}$ acids	6	0.8691	0.0762	-3.1416	0.999	1498
Propyl esters of $\mathrm{C}_{10}-\mathrm{C}_{20}$ acids	6	1.5442	0.0639	-5.0775	0.997	498
Aryl acetate	5	-4.7470	0.2474	11.4390	0.993	142
Acetate of terpene alcohols	8	3.1006	0.0390	-9.6406	0.876	17.7
γ-Lactone	5	-3.6681	0.2097	8.5237	0.986	70.4

Table 5
Limits of K_{p} and average $j \pm \sigma$ values of several group of organic compounds

Compounds	N	Range of I values	Range of K_{p} values	$j \pm \sigma$
n-Alkane $\mathrm{C}_{8}-\mathrm{C}_{15}$	8	800-1500	11.9-53.6	-0.27 ± 0.03
Monoterpene $\mathrm{C}_{10} \mathrm{H}_{16}$ hydrocarbons	12	896-1088	3.99-7.99	0.28 ± 0.19
Sesquiterpene $\mathrm{C}_{15} \mathrm{H}_{24}$ Hydrocarbons	10	1428-1528	6.0-11.0	0.55 ± 0.09
Alkyl aromatic $\mathrm{C}_{7}-\mathrm{C}_{18}$ hydrocarbons	34	760-1640	1.07-7.88	0.70 ± 0.02
Hexanoate of aliphatic $\mathrm{C}_{2}-\mathrm{C}_{6}$ alcohols	5	996-1382	1.61-4.01	0.79 ± 0.01
Pentanoate of aliphatic $\mathrm{C}_{3}-\mathrm{C}_{5}$ alcohols	8	825-1243	0.89-1.35	0.88 ± 0.01
Butanoate of aliphatic $\mathrm{C}_{1}-\mathrm{C}_{6}$ alcohols	9	800-1190	0.64-1.00	0.96 ± 0.04
Propyl esters of $\mathrm{C}_{10}-\mathrm{C}_{20}$ carboxylic acids	6	1493-2495	2.93-26.9	1.01 ± 0.02
Propanoate of aliphatic $\mathrm{C}_{2}-\mathrm{C}_{5}$ alcohols	5	714-969	0.46-0.94	1.02 ± 0.02
Ethyl esters of $\mathrm{C}_{10}-\mathrm{C}_{20}$ carboxylic acids	6	1394-2400	2.27-20.7	1.04 ± 0.01
Methyl esters of $\mathrm{C}_{10}-\mathrm{C}_{20}$ carboxylic acids	7	1326-2332	$1.7-17.0$	1.12 ± 0.02
Acetate of aliphatic $\mathrm{C}_{4}-\mathrm{C}_{22}$ alcohols	14	812-2613	0.53-22.4	1.17 ± 0.05
Terpene epoxide	9	1072-1585	0.38-4.3	1.22 ± 0.20
Formate of aliphatic $\mathrm{C}_{4}-\mathrm{C}_{6}$ alcohols	4	737-927	0.33-0.46	1.23 ± 0.03
Acetate of monoterpene alcohols	8	1171-1420	0.93-1.28	1.24 ± 0.04
Acetate of sesquiterpene alcohols	7	1700-1782	2.24-4.99	1.32 ± 0.09
Monoterpene carbonyls	6	1087-1271	0.38-0.60	1.48 ± 0.15
Monoterpene alcohols	7	1100-1227	0.25-0.50	1.62 ± 0.09
Sesquiterpene alcohols	16	1537-1759	0.52-1.10	1.71 ± 0.09
Acetate of phenyl alkyl alcohols	5	1192-1781	0.13-0.40	2.00 ± 0.08
Lactones	7	1256-1711	0.08-0.34	2.32 ± 0.17

vary 5-10-fold, the average value of the parameter j falls in a narrow range, which usually is in the limits of $\pm 5 \%$ rel.

Consequently, the joint use of partition coefficients and retention indices makes it possible to carry out a two-stage identification algorithm. In the first stage, the component is assigned to a certain homologous series (or to a limited number of these series) from the calculated j value. Then it is identified from the retention index within the chosen series. The m / z value of the maximum peak in the compound's mass spectrum can be used as an additional identification characteristic if the GC analysis proceeds in combination with low-resolution mass spectrometry. This approach makes it possible to exclude identification errors based on the comparison of mass spectra recorded during analyses and those contained in the computer memory [4,5].

References

[2] V.G. Berezkin, V.D. Loshilova, A.G. Pankov, V.D. Yagodovskii, Khromato-Raspredelitelnyi Metod, Nauka, Moscow, 1976, in Russian.
[3] I.G. Zenkevich, A.V. Vasil'ev, Russ. J. Anal. Chem. 48 (1993) 473, in Russian.
[4] V.A. Isidorov, U. Krajewska, J. Jaroszynska, K. Bal, A. Niesluchowslca, L. Vetchinnikova, I. Fuksman, Chem. Anal. (Warsaw) 45 (2000) 513.
[5] V.A. Isidorov, I.G. Zenkevich, U. Krajewska, E.N. Dubis, J. Jaroszynska, K. Bal, Phytochem. Anal. 12 (2001) 87.
[6] V.A. Isidorov, I.G. Zenkevich, E.N. Dubis, A. Slowikowski, E. Wojciuk, J. Chromatogr. A 814 (1998) 253.
[7] R.J. Hamilton, S. Hamilton, Lipid Analysis. A Practical Approach, Oxford University Press, New York, 1992.
[8] K. Blau, J. Hocket, Handbook of Derivatives for Chromatography, J. Wiley, Chichester, 1993.
[9] R. Kaliszan, Quantitative Structure-Chromatographic Retention Relationships, Wiley, New York, 1987.
[10] V. Isidorov, I. Zenkevich, T. Sacharewicz, Chem. Anal. (Warsaw) 42 (1997) 627.
[11] Reference Book of Chemist, Vol. 2, Khimiya, Moscow, 1965.
[12] Propriety of Organic Compounds. Reference Book, Khimiya, Leningrad, 1984.
[13] R.P. Adams, Identification of Essential Oil Components by GC-MS, Allurd, Carol Stream, IL, 1995.

[^0]: *Corresponding author. Tel.: +48-85-457-580; fax: +48-85-457-581.

 E-mail address: isidorov@noc.uwb.edu.pl (V.A. Isidorov).

